import arviz as az
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import pymc as pm
from pymc.math import exp
5. Time-to-event Models: Example 2*#
censored = np.array([np.inf, np.inf, 1, np.inf, 3])
y = np.array([2, 3, 1, 2.5, 3])
with pm.Model() as m:
λ = pm.Gamma("λ", 2, 3)
α = 1.5
β = λ ** (-1 / α)
obs_latent = pm.Weibull.dist(α, β)
likelihood = pm.Censored(
"likelihood", obs_latent, lower=None, upper=censored, observed=y
)
trace = pm.sample(1000)
az.summary(trace)
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [λ]
100.00% [8000/8000 00:00<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 1 seconds.
mean | sd | hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail | r_hat | |
---|---|---|---|---|---|---|---|---|---|
λ | 0.234 | 0.104 | 0.064 | 0.423 | 0.002 | 0.002 | 1624.0 | 1838.0 | 1.0 |
%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Wed Mar 22 2023
Python implementation: CPython
Python version : 3.11.0
IPython version : 8.9.0
pytensor: 2.10.1
pandas : 1.5.3
matplotlib: 3.6.3
pymc : 5.1.2
numpy : 1.24.2
arviz : 0.14.0