import pymc as pm
import numpy as np
import arviz as az

4. Priors as Hidden Mixtures*#

Adapted from Unit 7: tasmixture.odc and Jeremymus.odc

Student T likelihood with Normal prior vs Normal likelihood with Gamma prior#

This example demonstrates the equivalence of a couple methods. Variable names from original problem are retained right now, but they are kind of a mess. Will fix later.

Confusingly, the Student’s T distribution parameter sigma in PyMC is equivalent to the tau parameter in the BUGS parameterization.

df = 6
x = y = 10
mu0 = 6
tau1 = 10
tau = 0.4
a = df / 2
b = df / (2 * tau)

with pm.Model() as m1:
    mu1 = pm.StudentT("mu1", nu=df, mu=mu0, sigma=tau)
    pm.Normal("X", mu1, tau=tau1, observed=x)

    prec = pm.Gamma("prec", a, b)
    mu2 = pm.Normal("mu2", mu0, tau=prec)
    pm.Normal("Y", mu2, tau=tau1, observed=y)

    trace = pm.sample(3000)
Hide code cell output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [mu1, prec, mu2]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
az.summary(trace)
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
mu1 9.824 0.322 9.204 10.408 0.003 0.002 15555.0 9439.0 1.0
mu2 9.909 0.318 9.312 10.502 0.003 0.002 12622.0 9347.0 1.0
prec 0.233 0.126 0.036 0.460 0.001 0.001 14735.0 8701.0 1.0

Jeremy’s IQ - Normal prior as a scale mixture of uniforms#

Any symmetric unimodal distribution is a scale mixture of uniforms.

\[y|\mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)\]

is the same as

\[y|\mu, \xi \sim U(\mu - \sigma d^{1/2}, \mu + \sigma d^{1/2})\]
\[d \sim Ga(3/2, 1/2)\]

If \(d \sim Ga(3/2, s/2)\), \(s \lt 1\) heavy tails, \(s\gt 1\) light tails

precy = 0.0125
precth = 0.0083333
mu = 110
s_list = [0.5, 1, 2]
y = 98

summaries = []

for s in s_list:
    beta = s / 2
    with pm.Model() as m2:
        d = pm.Gamma("d", 1.5, beta)
        lb = mu - (d / precth) ** 0.5
        ub = mu + (d / precth) ** 0.5

        theta = pm.Uniform("theta", lb, ub)

        pm.Normal("y", mu=theta, tau=precy, observed=y)

        trace = pm.sample(3000)

    summaries.append(az.summary(trace, kind="stats"))
Hide code cell output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [d, theta]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [d, theta]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [d, theta]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
for s, summary in zip(s_list, summaries):
    print(f"{s=}")
    print(summary)
    print("\n")
s=0.5
          mean     sd  hdi_3%  hdi_97%
d        5.214  4.249   0.043   12.921
theta  101.093  7.655  87.282  115.913


s=1
          mean     sd  hdi_3%  hdi_97%
d        2.838  2.287   0.008    6.886
theta  102.950  6.902  90.222  116.055


s=2
          mean     sd  hdi_3%  hdi_97%
d        1.512  1.192   0.014    3.715
theta  104.845  5.870  93.745  115.580
%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Wed Mar 22 2023

Python implementation: CPython
Python version       : 3.11.0
IPython version      : 8.9.0

pytensor: 2.10.1

pymc : 5.1.2
numpy: 1.24.2
arviz: 0.14.0