import pymc as pm
import numpy as np
import arviz as az
4. Priors as Hidden Mixtures*#
Adapted from Unit 7: tasmixture.odc and Jeremymus.odc
Student T likelihood with Normal prior vs Normal likelihood with Gamma prior#
This example demonstrates the equivalence of a couple methods. Variable names from original problem are retained right now, but they are kind of a mess. Will fix later.
Confusingly, the Student’s T distribution parameter sigma in PyMC is equivalent to the tau parameter in the BUGS parameterization.
df = 6
x = y = 10
mu0 = 6
tau1 = 10
tau = 0.4
a = df / 2
b = df / (2 * tau)
with pm.Model() as m1:
mu1 = pm.StudentT("mu1", nu=df, mu=mu0, sigma=tau)
pm.Normal("X", mu1, tau=tau1, observed=x)
prec = pm.Gamma("prec", a, b)
mu2 = pm.Normal("mu2", mu0, tau=prec)
pm.Normal("Y", mu2, tau=tau1, observed=y)
trace = pm.sample(3000)
Show code cell output Hide code cell output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [mu1, prec, mu2]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
az.summary(trace)
mean | sd | hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail | r_hat | |
---|---|---|---|---|---|---|---|---|---|
mu1 | 9.824 | 0.322 | 9.204 | 10.408 | 0.003 | 0.002 | 15555.0 | 9439.0 | 1.0 |
mu2 | 9.909 | 0.318 | 9.312 | 10.502 | 0.003 | 0.002 | 12622.0 | 9347.0 | 1.0 |
prec | 0.233 | 0.126 | 0.036 | 0.460 | 0.001 | 0.001 | 14735.0 | 8701.0 | 1.0 |
Jeremy’s IQ - Normal prior as a scale mixture of uniforms#
Any symmetric unimodal distribution is a scale mixture of uniforms.
\[y|\mu, \sigma^2 \sim \mathcal{N}(\mu, \sigma^2)\]
is the same as
\[y|\mu, \xi \sim U(\mu - \sigma d^{1/2}, \mu + \sigma d^{1/2})\]
\[d \sim Ga(3/2, 1/2)\]
If \(d \sim Ga(3/2, s/2)\), \(s \lt 1\) heavy tails, \(s\gt 1\) light tails
precy = 0.0125
precth = 0.0083333
mu = 110
s_list = [0.5, 1, 2]
y = 98
summaries = []
for s in s_list:
beta = s / 2
with pm.Model() as m2:
d = pm.Gamma("d", 1.5, beta)
lb = mu - (d / precth) ** 0.5
ub = mu + (d / precth) ** 0.5
theta = pm.Uniform("theta", lb, ub)
pm.Normal("y", mu=theta, tau=precy, observed=y)
trace = pm.sample(3000)
summaries.append(az.summary(trace, kind="stats"))
Show code cell output Hide code cell output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [d, theta]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [d, theta]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [d, theta]
100.00% [16000/16000 00:01<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 1 seconds.
for s, summary in zip(s_list, summaries):
print(f"{s=}")
print(summary)
print("\n")
s=0.5
mean sd hdi_3% hdi_97%
d 5.214 4.249 0.043 12.921
theta 101.093 7.655 87.282 115.913
s=1
mean sd hdi_3% hdi_97%
d 2.838 2.287 0.008 6.886
theta 102.950 6.902 90.222 116.055
s=2
mean sd hdi_3% hdi_97%
d 1.512 1.192 0.014 3.715
theta 104.845 5.870 93.745 115.580
%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Wed Mar 22 2023
Python implementation: CPython
Python version : 3.11.0
IPython version : 8.9.0
pytensor: 2.10.1
pymc : 5.1.2
numpy: 1.24.2
arviz: 0.14.0