import pymc as pm
import pandas as pd
import numpy as np
import arviz as az
from pymc.math import dot
import pytensor.tensor as pt

13. Multiple Regression: Brozek Index Prediction*#

Adapted from fat2d.odc and fatmulti.odc (they appear to be identical). This is the same dataset as the first regression example, available for download here.

This is not necessarily the best model for multiple regression; rather, it is just an attempt at implementing the lecture code, which is using Zellner’s G-prior Zellner [1986]. For multivariate regression in PyMC, we recommend pm.LKJCholeskyCov or pm.LKJCorr as your covariance matrix prior.

data = pd.read_csv("../data/fat.tsv", sep="\t")

y = data["y"].to_numpy(copy=True)
X = data.iloc[:, 1:].to_numpy(copy=True)

# add intercept
X_aug = np.concatenate((np.ones((X.shape[0], 1)), X), axis=1)
n, p = X_aug.shape

# Zellner's g
g = p**2

n, p, g
(252, 15, 225)
mu_beta = np.zeros(p)
with pm.Model() as m2d:
    tau = pm.Gamma("tau", 0.01, 0.01)
    variance = pm.Deterministic("variance", 1 / tau)

    tau_matrix = pt.fill(pt.zeros((15, 15)), tau)
    tau_beta = tau_matrix / g * dot(X_aug.T, X_aug)
    beta = pm.MvNormal("beta", mu_beta, tau=tau_beta)

    mu = dot(X_aug, beta)
    pm.Normal("likelihood", mu=mu, tau=tau, observed=y)

    # Bayesian R2 from fat2d.odc
    sse = (n - p) * variance
    cy = y - y.mean()
    sst = dot(cy, cy)
    br2 = pm.Deterministic("br2", 1 - sse / sst)
    br2_adj = pm.Deterministic("br2_adj", 1 - (n - 1) * variance / sst)

    trace = pm.sample(1000)
    ppc = pm.sample_posterior_predictive(trace)
Hide code cell output
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [tau, beta]

Sampling 4 chains for 1_000 tune and 1_000 draw iterations (4_000 + 4_000 draws total) took 88 seconds.
Sampling: [likelihood]

az.summary(trace, hdi_prob=0.95)
mean sd hdi_2.5% hdi_97.5% mcse_mean mcse_sd ess_bulk ess_tail r_hat
beta[0] -15.031 16.576 -45.559 16.813 0.353 0.272 2219.0 2267.0 1.0
beta[1] 0.056 0.031 -0.001 0.118 0.001 0.000 3536.0 3260.0 1.0
beta[2] -0.081 0.052 -0.183 0.018 0.001 0.001 2301.0 2362.0 1.0
beta[3] -0.056 0.105 -0.262 0.146 0.002 0.001 3175.0 3214.0 1.0
beta[4] 0.053 0.285 -0.480 0.613 0.005 0.004 3119.0 2857.0 1.0
beta[5] -0.441 0.225 -0.889 -0.024 0.004 0.003 3456.0 2912.0 1.0
beta[6] -0.028 0.101 -0.231 0.165 0.002 0.001 3516.0 2901.0 1.0
beta[7] 0.874 0.088 0.695 1.040 0.001 0.001 3545.0 2925.0 1.0
beta[8] -0.200 0.141 -0.490 0.056 0.003 0.002 2682.0 2755.0 1.0
beta[9] 0.225 0.139 -0.048 0.498 0.002 0.002 3178.0 2759.0 1.0
beta[10] 0.003 0.235 -0.438 0.476 0.004 0.004 3414.0 2592.0 1.0
beta[11] 0.153 0.208 -0.241 0.577 0.003 0.003 4039.0 2692.0 1.0
beta[12] 0.148 0.165 -0.178 0.455 0.003 0.002 3584.0 2960.0 1.0
beta[13] 0.419 0.196 0.048 0.799 0.003 0.002 3888.0 2837.0 1.0
beta[14] -1.470 0.499 -2.501 -0.559 0.008 0.006 3686.0 3192.0 1.0
tau 0.060 0.005 0.050 0.070 0.000 0.000 3663.0 2827.0 1.0
variance 16.920 1.548 14.172 20.159 0.026 0.018 3663.0 2827.0 1.0
br2 0.734 0.024 0.683 0.777 0.000 0.000 3663.0 2827.0 1.0
br2_adj 0.718 0.026 0.664 0.764 0.000 0.000 3663.0 2827.0 1.0
y_pred = ppc.posterior_predictive.stack(sample=("chain", "draw"))["likelihood"].values.T
az.r2_score(y, y_pred)
r2        0.654267
r2_std    0.023808
dtype: float64
%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Sun Mar 09 2025

Python implementation: CPython
Python version       : 3.12.7
IPython version      : 8.29.0

pytensor: 2.26.4

arviz   : 0.20.0
pandas  : 2.2.3
pytensor: 2.26.4
pymc    : 5.19.1
numpy   : 1.26.4