import matplotlib.pyplot as plt
import numpy as np
from tqdm.auto import tqdm
import pymc as pm
import arviz as az

13. Pumps*#

Adapted from Unit 5: pumpsmc.m and pumpsbugs.odc.

Original sources: George et al. [1993] and Gaver and O'Muircheartaigh [1987].

rng = np.random.default_rng(1)

obs = 100000
burn = 1000

# data from Gaver and O'Muircheartaigh, 1987
X = np.array([5, 1, 5, 14, 3, 19, 1, 1, 4, 22])
t = np.array(
    [94.32, 15.52, 62.88, 125.76, 5.24, 31.44, 1.048, 1.048, 2.096, 10.48]
)
n = len(X)

# params
c = 0.1
d = 1

# inits
theta = np.ones(n)
beta = 1

thetas = np.zeros((obs, 10))
betas = np.zeros(obs)

for i in tqdm(range(obs)):
    theta = rng.gamma(shape=X + 1, scale=1 / (beta + t), size=n)
    sum_theta = np.sum(theta)

    beta = rng.gamma(shape=n + c, scale=1 / (sum_theta + d))

    thetas[i] = theta
    betas[i] = beta

thetas = thetas[burn:]
betas = betas[burn:]
Hide code cell output
Hide code cell source
mean_thetas = np.mean(thetas, axis=0)
mean_betas = np.mean(betas)

print("means:")
for i, avg in enumerate(mean_thetas):
    print(f"θ_{i+1} : {avg:.4f}")

print(f"β: {mean_betas:.4f}")

# Create histograms for thetas
fig, axes = plt.subplots(5, 2, figsize=(7, 16))

for i, ax in enumerate(axes.flatten()):
    ax.grid(True)
    ax.hist(thetas[:, i], color="lightgreen", density=True, bins=50)
    ax.set_title(r"$\theta_{" + f"{i+1}" + r"}$")
    ax.set_xlabel(f"Value")
    ax.set_ylabel(f"Density")

plt.tight_layout()

# Create a histogram for beta
fig2, ax2 = plt.subplots(1, 1, figsize=(7, 4))

ax2.grid(True)
ax2.hist(betas, color="lightblue", density=True, bins=50)
ax2.set_title("β")
ax2.set_xlabel("Value")
ax2.set_ylabel("Density")

plt.tight_layout()
plt.show()
means:
θ_1 : 0.0628
θ_2 : 0.1184
θ_3 : 0.0934
θ_4 : 0.1180
θ_5 : 0.6104
θ_6 : 0.6105
θ_7 : 0.8710
θ_8 : 0.8710
θ_9 : 1.4827
θ_10 : 1.9496
β: 1.3367
../_images/0078d6cb282fce992472473df652210c52b7b2866e07daf313fc249d95f0ed54.png ../_images/d055dc40204887afcc2e374d179c287e672f7361f0c780dfceaf32350024144b.png

Now for the PyMC model:

with pm.Model() as m:
    times = pm.ConstantData("times", t)
    data = pm.ConstantData("data", X)

    beta = pm.Gamma("beta", alpha=c, beta=d)
    theta = pm.Gamma("theta", alpha=d, beta=beta, shape=n)
    rate = pm.Deterministic("rate", theta * times)

    likelihood = pm.Poisson("likelihood", mu=rate, observed=data)

    # start sampling
    trace = pm.sample(5000)
Hide code cell output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [beta, theta]
100.00% [24000/24000 00:02<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 5_000 draw iterations (4_000 + 20_000 draws total) took 3 seconds.
az.summary(trace, var_names=["~rate"])
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
beta 1.336 0.489 0.496 2.235 0.003 0.002 28254.0 16048.0 1.0
theta[0] 0.063 0.026 0.020 0.112 0.000 0.000 32410.0 13799.0 1.0
theta[1] 0.118 0.083 0.005 0.270 0.000 0.000 29059.0 13169.0 1.0
theta[2] 0.093 0.038 0.028 0.163 0.000 0.000 33616.0 12846.0 1.0
theta[3] 0.118 0.030 0.064 0.176 0.000 0.000 32213.0 13436.0 1.0
theta[4] 0.615 0.309 0.129 1.195 0.002 0.001 31105.0 12634.0 1.0
theta[5] 0.610 0.134 0.368 0.866 0.001 0.001 35250.0 15216.0 1.0
theta[6] 0.868 0.650 0.020 2.044 0.004 0.003 27288.0 14224.0 1.0
theta[7] 0.867 0.643 0.017 2.004 0.004 0.003 26571.0 13272.0 1.0
theta[8] 1.485 0.698 0.336 2.769 0.004 0.003 31306.0 14821.0 1.0
theta[9] 1.949 0.413 1.208 2.721 0.002 0.002 33359.0 14035.0 1.0

Compare to BUGS results:

mean

sd

MC_error

val2.5pc

median

val97.5pc

start

sample

beta

1.34

0.486

0.002973

0.5896

1.271

2.466

1001

50000

theta[1]

0.06261

0.02552

1.11E-04

0.02334

0.05914

0.1217

1001

50000

theta[2]

0.118

0.08349

3.69E-04

0.01431

0.09888

0.3296

1001

50000

theta[3]

0.09366

0.03829

1.71E-04

0.03439

0.08842

0.1828

1001

50000

theta[4]

0.1178

0.03048

1.47E-04

0.06595

0.115

0.1848

1001

50000

theta[5]

0.6116

0.3097

0.001409

0.1632

0.5589

1.361

1001

50000

theta[6]

0.6104

0.1366

6.45E-04

0.3705

0.6001

0.9058

1001

50000

theta[7]

0.8686

0.6494

0.003059

0.101

0.7124

2.537

1001

50000

theta[8]

0.8692

0.6481

0.003354

0.09784

0.7117

2.513

1001

50000

theta[9]

1.478

0.6897

0.00351

0.4705

1.367

3.128

1001

50000

theta[10]

1.944

0.4133

0.002022

1.223

1.916

2.83

1001

50000

%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Sun Aug 27 2023

Python implementation: CPython
Python version       : 3.11.4
IPython version      : 8.14.0

pytensor: 2.14.2

matplotlib: 3.7.2
numpy     : 1.24.4
arviz     : 0.16.1
pymc      : 5.7.1