import pymc as pm
import numpy as np
import arviz as az
5. Meta-analysis via Hierarchical Models*#
Adapted from Unit 7: rats_nocentering.odc.
Data for x can be found here, and Y here.
y = np.loadtxt("../data/rats_nocenteringy.txt")
x = np.loadtxt("../data/rats_nocenteringx.txt")
x.shape, y.shape
((5,), (30, 5))
This example is taken from Gelfand et al (1990), and concerns 30 young rats whose weights were measured weekly for five weeks.
with pm.Model() as m:
mu_alpha = pm.Normal("mu_alpha", 0, tau=1e-6)
tau_alpha = pm.Gamma("tau_alpha", 0.001, 0.001)
mu_beta = pm.Normal("mu_beta", 0, tau=1e-6)
tau_beta = pm.Gamma("tau_beta", 0.001, 0.001)
tau = pm.Gamma("tau", 0.001, 0.001)
sigma = pm.Deterministic("sigma", 1 / tau**0.5)
alpha = pm.Normal("alpha", mu_alpha, tau=tau_alpha, shape=(30, 1))
beta = pm.Normal("beta", mu_beta, tau=tau_beta, shape=(30, 1))
mu = alpha + beta * x
pm.Normal("y", mu, tau=tau, observed=y)
trace = pm.sample(3000)
Show code cell output
Auto-assigning NUTS sampler...
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [mu_alpha, tau_alpha, mu_beta, tau_beta, tau, alpha, beta]
100.00% [16000/16000 00:27<00:00 Sampling 4 chains, 0 divergences]
Sampling 4 chains for 1_000 tune and 3_000 draw iterations (4_000 + 12_000 draws total) took 27 seconds.
az.summary(trace, var_names=["~alpha", "~beta"])
mean | sd | hdi_3% | hdi_97% | mcse_mean | mcse_sd | ess_bulk | ess_tail | r_hat | |
---|---|---|---|---|---|---|---|---|---|
mu_alpha | 106.562 | 2.294 | 102.169 | 110.887 | 0.020 | 0.014 | 13847.0 | 9366.0 | 1.0 |
mu_beta | 6.186 | 0.106 | 5.982 | 6.382 | 0.001 | 0.001 | 13038.0 | 9634.0 | 1.0 |
tau_alpha | 0.010 | 0.004 | 0.004 | 0.017 | 0.000 | 0.000 | 9855.0 | 8919.0 | 1.0 |
tau_beta | 4.313 | 1.476 | 1.755 | 6.912 | 0.014 | 0.010 | 12379.0 | 9436.0 | 1.0 |
tau | 0.027 | 0.004 | 0.020 | 0.035 | 0.000 | 0.000 | 7883.0 | 9493.0 | 1.0 |
sigma | 6.142 | 0.467 | 5.281 | 7.029 | 0.005 | 0.004 | 7883.0 | 9493.0 | 1.0 |
pm.model_to_graphviz(model=m)
%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Wed Mar 22 2023
Python implementation: CPython
Python version : 3.11.0
IPython version : 8.9.0
pytensor: 2.10.1
arviz: 0.14.0
numpy: 1.24.2
pymc : 5.1.2