6. Example: Jeremy’s IQ#
This example shows how to use the Normal-Normal conjugate pair.
Jeremy, a Georgia Tech student, is modeling his IQ as \(\mathcal{N}(\theta, 80)\). Our prior on a GT student’s mean IQ, \(\theta\), is \(\mathcal{N}(110, 120)\). Jeremy takes an IQ test and scores 98.
Here’s our model:
\[\begin{split}
\begin{align*}
X | \theta &\sim \mathcal{N}(\theta, 80) \\
\theta &\sim \mathcal{N}(110, 120)
\end{align*}
\end{split}\]
According to the conjugate table, we can use the Normal-Normal pair as follows:
\[\theta\mid X\sim \mathcal{N}\left(\frac{\tau^2}{\tau^2 +\sigma^2/n}\bar{X} + \frac{\sigma^2/n}{\tau^2 + \sigma^2/n}\mu, \frac{\tau^2\sigma^2/n}{\tau^2+ \sigma^2/n}\right)\]
We know the following from the problem description:
\(\mu = 110, \tau^2 = 120, \sigma^2 = 80, n = 1, \bar{X} = 98\)
So:
\[\begin{split}
\begin{align*}
\theta\mid X &\sim \mathcal{N}\left(\frac{120}{120 + 80/1}(98) + \frac{80/1}{120 + 80/1}(110), \frac{(120)(80)/1}{120 + 80/1}\right) \\
&\sim \mathcal{N}(102.8, 48)
\end{align*}
\end{split}\]
If we increase \(n\) to 5 with the same mean, the posterior mean and variance both go down as the data starts to overwhelm the prior: \(\mathcal{N}(99.4, 14.1)\).