import pymc as pm
import numpy as np
import arviz as az
from pytensor.tensor import subtensor as st

17. Multinomial regression*#

Adapted from Unit 7: NHANESmulti.odc

Problem statement#

The National Health and Nutrition Examination Survey (NHANES) is a program of studies designed to assess the health and nutritional status of adults and children in the United States. The survey is unique in that it combines interviews and physical examinations.

Assume that N subjects select a choice form K categories. The i-th subject is characterized by 3 covariates x[i,1], x[i,2], and x[i,3]. Given the covariates, model the probability of a subject selecting the category k, k=1,…,K.

# data
# fmt: off
y = np.array([[1, 0, 0, 0, 0],
              [0, 1, 0, 0, 0],
              [1, 0, 0, 0, 0],
              [0, 0, 1, 0, 0],
              [0, 1, 0, 0, 0],
              [0, 0, 1, 0, 0],
              [0, 0, 0, 1, 0],
              [0, 0, 0, 0, 1],
              [0, 0, 0, 0, 1],
              [0, 0, 0, 1, 0]])

X =np.array([[2, 4, 9],
             [1, 5, 10],
             [1, 6, 14],
             [2, 4, 21],
             [2, 4, 22],
             [2, 6, 30],
             [3, 3, 33],
             [3, 2, 36],
             [3, 1, 40],
             [4, 1, 44]])
# fmt: on
y.shape
(10, 5)
X_aug = np.concatenate((np.ones((X.shape[0], 1)), X), axis=1)
X_aug.shape
(10, 4)
with pm.Model() as m:
    y_data = pm.Data("y", y)
    X_data = pm.Data("X", X_aug)

    _beta = pm.Normal("_beta", 0, tau=0.1, shape=(4, 5))
    # first col in BUGS example is assigned 0
    # might be better to prepend a column of zeroes rather than overwrite
    beta = pm.Deterministic("beta", st.set_subtensor(_beta[:, 0], 0))
    eta = pm.math.exp(pm.math.dot(X_data, beta))
    p = eta / pm.math.sum(eta, axis=1)

    pm.Multinomial("likelihood", n=1, p=p, observed=y_data, shape=X_data.shape)

    trace = pm.sample(10000)
Initializing NUTS using jitter+adapt_diag...
Multiprocess sampling (4 chains in 4 jobs)
NUTS: [_beta]

Sampling 4 chains for 1_000 tune and 10_000 draw iterations (4_000 + 40_000 draws total) took 25 seconds.
X_new = np.array([1, 3, 3, 30]).reshape((1, 4))

with m:
    pm.set_data({"X": X_new})
    ppc = pm.sample_posterior_predictive(trace, predictions=True)
Sampling: [likelihood]

az.summary(ppc.predictions)
mean sd hdi_3% hdi_97% mcse_mean mcse_sd ess_bulk ess_tail r_hat
likelihood[0, 0] 0.008 0.090 0.0 0.0 0.000 0.000 38988.0 38988.0 1.0
likelihood[0, 1] 0.039 0.194 0.0 0.0 0.001 0.001 40973.0 40973.0 1.0
likelihood[0, 2] 0.119 0.324 0.0 1.0 0.002 0.001 40603.0 40000.0 1.0
likelihood[0, 3] 0.683 0.465 0.0 1.0 0.002 0.002 40085.0 40000.0 1.0
likelihood[0, 4] 0.150 0.357 0.0 1.0 0.002 0.001 40403.0 40000.0 1.0
%load_ext watermark
%watermark -n -u -v -iv -p pytensor
Last updated: Sun Mar 09 2025

Python implementation: CPython
Python version       : 3.12.7
IPython version      : 8.29.0

pytensor: 2.26.4

arviz   : 0.20.0
pymc    : 5.19.1
pytensor: 2.26.4
numpy   : 1.26.4